USN

18EVE15

First Semester M.Tech. Degree Examination, Dec.2018/Jan.2019 **Digital VLSI Design**

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Derive an expression for the drain current of enhancement n-channel MOSFET when operating in linear region, saturation region and when channel length is modulated.
 - b. Draw the VTC of nMOS inverter with resistive load and derive an expression for the V_{OH} , V_{OL} , V_{IL} and V_{IH} . (12 Marks)

OR

- 2 a. What is scaling? Describe two methods of scaling. Also justify which scaling method is good. (05 Marks)
 - b. Explain the concept of accumulation, depletion and inversion with corresponding energy band diagram. (10 Marks)
 - c. Find the noise margin of a resistive load inverter circuit with $V_{DD} = 5V$, $k_n' = 20\mu A/V^2$, $V_{To} = 0.8V$, $R_L = 200k\Omega$ and W/L = 2. (05 Marks)

Module-2

- 3 a. Draw the VTC of CMOS inverter and derive an expression for the $V_{OH},\,V_{OL},\,V_{IL}\,V_{IH}$ and V_{th} .
 - b. Draw the circuit diagram of CMOS inverter indicating all types of capacitances and write the expression for load capacitance. (04 Marks)
 - C. Derive an expression for the τ_{PHL} of CMOS inverter.

(06 Marks)

OR

- 4 a. Find the noise margin and the switching threshold (V_{th}) of a CMOS inverter with $V_{DD}=3.3V,\ V_{TO},\ n=0.6V,\ V_{TO,P}=-0.7V,\ \mu_nC_{ox}=60\mu A/V^2,\ \mu_pC_{OX}=16\mu A/V^2,\ (W/L)_n=8,\ and\ (W/L)_P=12.$ (08 Marks)
 - b. Derive an expression for the Elmore delay of RC network.

(06 Marks)

c. Derive an expression for the dynamic power consumption of the CMOS inverter. (06 Marks)

Module-3

- 5 a. Draw the detailed circuit diagram of 3-transistor DRAM and describe the read/write operation with timing diagram. (08 Marks)
 - b. Describe the organization of 4 M bit DRAM.

(04 Marks

Explain with diagram the NOR flash memory cell operation and NAND flash memory cell operation.
(08 Marks)

OR

- 6 a. Draw the circuit diagram of SRAM cell with sense amplifier and read/write circuit and describe the operation with read and write timing diagram. (08 Marks)
 - b. Draw the memory structure of FRAM cell array and describe the read timing diagram.

(08 Marks)

c. Draw the circuit diagram of NOR-based raw decoder circuit for 2-address bits and 4 word lines. (04 Marks)

Module-4

- 7 a. Describe the operation of pass transistor and derive an expression for logic '1' transfer and logic '0' transfer. (08 Marks)
 - b. Derive the carry expression for the 4-bit CLA adder and implement the carry expressions by using multiple-output domino CMOS fute. (06 Marks)
 - c. Realize the following Boolean expression using BiCMOS logic f = ab(c + d + e). (06 Marks)

OR

8 a. Describe the working principle of voltage Bootstrapping.

(06 Marks)

- b. Describe the dynamic behavior of BJT by deriving the corresponding expressions. (10 Marks)
- c. Draw the circuit diagram of a TSPC based rising edge triggered D-flip-flop and describe its operation and mention the advantages. (04 Marks)

Module-5

9 a. Describe the possible input and output circuits of VLSI chips.

(05 Marks)

b. Describe the process variation in output waveform of a 4-bit adder.

(05 Marks)

c. What is latch-up? Explain the concept of latch-up with neat diagram and suggest how latch-up can be avoided. (10 Marks)

OR

- 10 a. Describe the various model of ESD testing. Also describe the various ESD protection circuit. (10 Marks)
 - b. Describe circuit parameters, noise parameter distributions and circuit performance measures used in design for manufacturability. (10 Marks)